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The Inversion Relation and the Dilute A3, 4, 6

Eigenspectrum1
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On the basis of the result obtained by applying Baxter's exact perturbative
approach to the dilute A3 model to give the E8 mass spectrum, the dilute AL

inversion relation was used to predict the eigenspectra in the L=4 and L=6
cases (corresponding to E7 and E6 respectively). In calculating the next-to-lead-
ing term in the correlation lengths, or equivalently masses, the inversion relation
condition gives a surprisingly simple result in all three cases, and for all masses.
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1. INTRODUCTION

One model in statistical mechanics which attracts perennial interest is the
two-dimensional Ising model in a magnetic field. The integrable quantum
field theory which describes the (massive) scaling limit of this model is the
(1, 2)-perturbation of c= 1

2 conformal field theory due to Zamolodchikov(1)

which has E8 symmetry. Among the hierarchy of models, in their four
regimes, which form the dilute AL model, (2) is a realisation of this Ising
model.

The AL model is an L state interaction-round-a-face model(3) whose
adjacency diagram is the Dynkin diagram of AL with the additional
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possibility of a state being adjacent to itself on the lattice. In regime 2, the
central charge is

c=1&
6

L(L+1)
, (1)

and for L odd the Z2 symmetry is broken away from criticality. As well as
general calculations for dilute AL with L odd, various results have been
obtained which demonstrate the Ising critical exponents(4, 5) and hidden
E8 structures(6�13) in the dilute A3 model. Further, for L=4 and L=6, the
central charge of the E7 and E6 field theories(14) are recovered from (1).
While no complete calculation of order parameters for dilute AL with L
even has yet been carried out, there is a growing literature concerning the
hidden E-type structures.(6, 15, 16)

The motivation for the result presented here is a recent paper(17) in
which are given arguments for the higher-order terms in the scaling forms
for the Ising free energy and mass spectrum, and numerical estimates for
some of the corresponding amplitudes and univeral amplitude ratios. In
Section 2 we review our previous results for the eigenspectrum of the dilute
AL model for L=3, 4, 6, or equivalently the mass spectrum for E8 , E7 and E6 ,
with particular reference to the way the inversion relation of the solvable
model is expressed through it. In Section 3 we calculate the first correction
term for all three cases, E6, 7, 8 and, as a consequence of this property of the
lattice model realisation, we are able to give the coefficient very simply.

2. THE MASS SPECTRA

The eigenvalues of the row-to-row transfer matrix of the dilute A
models are(7)

4(u)=| _�1(2*&u) �1(3*&u)
�1(2*) �1(3*) &

N

`
N

j=1

�1(u&uj+*)
�1(u&uj&*)

+_�1(u) �1(3*&u)
�1(2*) �1(3*) &

N

`
N

j=1

�1(u&u j ) �1(u&uj&3*)
�1(u&uj&*) �1(u&uj&2*)

+|&1 _�1(u) �1(*&u)
�1(2*) �1(3*) &

N

`
N

j=1

�1(u&uj&4*)
�1(u&uj&2*)

(2)

where the N roots uj are given by the Bethe equations

| _�1(*&uj )
�1(*+uj )&

N

=& `
N

k=1

�1(uj&uk&2*) �1(uj&uk+*)
�1(u j&uk+2*) �1(uj&uk&*)

(3)
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and |=exp(i?l�(L+1)) for l=1,..., L. Here the (standard) elliptic func-
tions have nome p=e&= and for the regime of interest, the spectral param-
eter obeys 0<u<3*, where the crossing parameter is *=?s�r and in terms
of L, s=L+2 and r=4(L+1).

Based on numerical data for the string structure and positions of the
Bethe ansatz roots for the dilute A3 model, (7, 8) which indicate that there
are eight excitations of thermodynamic significance, recurrence relations
which enable the eigenvalue expressions to be found were solved.(10, 11) The
technique used is an exact perturbative approach, about the ordered limit
(with N large), first developed by Baxter for the eight-vertex model, (18, 3)

and also applied to the cyclic solid-on-solid model.(19) In terms of the con-
jugate variables w=e&2?u�= and x=e&?2�r=, the ordered limit is x � 0 (w
fixed). For the L=3 case, this corresponds to the strong-field limit, while
for the L even cases, this is the low-temperature situation. The elliptic func-
tions in the conjugate modulus form of (2) are those defined below in (7),
with nome x2r.

The quantities actually determined are the excitations

rj (w)= lim
N � �

4j (w)
40(w)

(4)

in terms of which the correlation lengths are !&1
j =&log rj . Because of the

inversion and crossing relations obeyed by the model's Boltzmann
weights, (4) the excitations must satisfy the inversion relation:

rj (w) rj (x6sw)=1, (5)

while a consequence of (2) is the stronger relation, which implies the former,

rj (w) rj (x4sw)=rj (x2sw). (6)

In terms of the (conjugate modulus) elliptic functions

E(z, q)= `
�

n=1

(1&qn&1z)(1&qn�z)(1&qn)=E(q�z, q)=&zE(z&1, q), (7)

the expression obtained(11) is

rj (w)=wn(a) `
a

E(&xa�w, x60) E(&x30&a�w, x60)
E(&xaw, x60) E(&x30&aw, x60)

. (8)

Apparent in this expression is the band structure of the eigenspectrum,
labelled by powers of w, the power given by the number of integers n(a)
appearing in the product. The values a takes, arising from the calculation
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Table I. The Integers a which
Appear in the Eigenvalue Expression

(8) of the Dilute A3 Model

j n(a) a

1 2 1, 11
2 2 7, 13
3 3 2, 10, 12
4 3 6, 10, 14
5 4 3, 9, 11, 13
6 4 6, 8, 12, 14
7 5 4, 8, 10, 12, 14
8 6 5, 7, 9, 11, 13, 15

described above, are those given in Table I. Transforming to the original
variables, appropriate for the critical limit, the leading term is

mj=!&1
j t8p8�15 :

a

sin
a?
30

as p � 0, (9)

which gives the mass ratios of the E8 field theory.(1)

There is no explicit L dependence in the integers a which could be
generalised to other members of the dilute A hierarchy in an immediate
way. However, they have appeared in connection with E8 in various
contexts, for example ref. 20, and with various interpretations. Most
significantly, they occur in affine Toda theory, where they appear in the
S-matrix for scattering from the particle labelled m1 .(21) In the context of
the dilute A3 model, McCoy and Orrick(9) observed them in work related
to ref. 7, and hence to the same Bethe ansatz root string structure used in
the calculation of (8). Suzuki(12) has used the quantum transfer matrix
(QTM) approach to recover the E8 Bethe ansatz equation from dilute A3

without any assumption of particular string structure, and has remarked
the occurence of the same integers in the zeroes of the fusion QTMs. This
suggests that for the cases L=4, 6 an expression analogous to (8) should
describe the eigenspectra, since the integers of Table I have E6 and E7

counterparts.
In expression (8) ``30'' plays a distinguished role in relationship to the

new nome x12s, where s=L+2. On the other hand, we see that in (9) it
enters as the dual Coxeter number g=30 of E8 . Moreover, the universal
amplitude(22, 23)

fs !2
1=0.061728. . . (10)
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is obtained, (10) and this relies on the power of p in the correlation length
!j being appropriately related to that of the singular part of the free energy
of the dilute AL model, (4)

fstpr�3s as p � 0. (11)

Although (8) would obey (5) for any integer a, the stronger inversion
relation (6) is satisfied because each integer a in Table I occurs together
with a+2s=a+( g�3), or equivalently, from properties of the elliptic func-
tion (7), with 4s&a=(2g�3)&a.

Gathering together these observations, it was proposed(15) that (8) is
a special case of the expression

rj (w)=wn(a) `
a

E(&x6sa�g�w, x12s) E(&x (6s(g&a))�g�w, x12s)
E(&x6sa�gw, x12s) E(&x(6s(g&a))�gw, x12s)

. (12)

For the dilute A4 model, which is related to E7 , g=18, while for the A6

model the appropriate Coxeter number is that of E6 , g=12.
Looking among the E6, 7 analogues (in refs. 20 and 21) of the integers

in Table I, knowing that the integers a appearing in (12) must be such that
(6) is obeyed, we were led to consider those in Tables II and III. The mass
ratios of E7 and E6 respectively are correctly given by the leading term
when (12) is expressed in the original nome,

!&1
j =mjt8pr�6s :

a

sin
a?
g

as p � 0. (13)

The integers in Tables II and III correspond to scattering from particle
m2 in the S-matrix of ref. 21, unlike those in Table I which we noted before

Table II. The Integers to Appear in (12) in
the L=4, or Equivalently E7 Case

j n(a) a

1 1 6
2 2 1, 7
3 2 4, 8
4 2 5, 7
5 3 2, 6, 8
6 3 4, 6, 8
7 4 3, 5, 7, 9
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Table III. The Integers to
Appear in (12) in the L=6 Case

j n(a) a

1, 1� 1 4
2 2 1, 5

3, 3� 2 3, 5
4 3 2, 4, 6

corresponded to m1 . This appears to be related to the concrete connection
drawn in ref. 24 between Toda theory related to affine Lie algebras and
integrable perturbations of conformal field theory. The additional node
on the Dynkin diagram in the affine case connects to the node called m1

(resp. m2 , m2) in the field theory labelling of the E8 (resp. E7 , E6) diagram,
thus distinguishing this node. We should also remark that Suzuki(16) has
recently obtained these integers in analogous work to ref. 12 for L=4, 6.

The conjecture (12) has now been confirmed(26) by using the string
structure for the Bethe ansatz roots for dilute A4

(25) to perform the same
type of calculation that led to (8), for the L=4 case.

3. HIGHER-ORDER TERMS

Recently, Caselle and Hasenbusch(17) have presented arguments based
on the renormalization group approach to give higher-order terms appear-
ing in the scaling form of the free energy and mass spectrum of the critical
two-dimensional Ising model in a magnetic field, and have obtained
numerical estimates for the amplitudes of some of these subleading correc-
tions. Since the dilute A3 model is from the same universality class, it seems
pertinent to examine the higher-order terms in the mass spectrum (12) to
establish both their order and the coefficients.

The mass spectrum of the Ising model is given in the form (our notation
for coefficients)

m2
j (h)=A2

mj
h16�15(1+Bmj

h16�15+Cmj
h22�15+Dmj

h30�15+Emj
h32�15+ } } } ),

(14)

which includes contributions attributed to both primary (relevant) and
secondary (irrelevant) operators.(17)
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Now consider the dilute A expression (12) expressed in terms of the
original nome, p, which plays the role of the magnetic field h for L=3
(while for L even p=0 corresponds to critical temperature):

mj=2 :
a

log
�4(a?�2g+?�4, pr�6s)
�4(a?�2g&?�4, pr�6s)

. (15)

Using the elliptic theta function identity(27)

log
�4(:+;, q)
�4(:&;, q)

=4 :
�

n=1

1
n

qn

1&q2n sin(2n:) sin(2n;) (16)

the masses may be written as

mj=8 :
a

:
�

n=1

1
n

( pr�6s)n

1&( pr�6s)2n sin \na?
g + sin \n?

2 + (17)

from which it can be seen that only odd-integer powers of pr�6s will occur,
i.e., odd powers of p8�15 for the L=3 case.

Expanding (17) in powers of pr�6s yields

mj=8pr�6s {:
a

sin \a?
g ++:

a _sin \a?
g +&

1
3

sin \3a?
g +& ( pr�6s)2+ } } } = , (18)

which appears unwieldy, particularly since each set of possible a's may
contain a different number of values. However, the property of the sets of
integers appearing in Tables I�III which caused (12) to obey the inversion
relation (6), namely that a occurs together with a+( g�3) (or (2g�3)&a),
means that

:
a

sin \3a?
g +=0 (19)

so that we obtain

mj=8pr�6s {:
a

sin
a?
g = [1+( pr�6s)2+O(( pr�6s)4)]. (20)

We thus see that the next-to-leading term has the same simple coef-
ficient for each of the cases E6, 7, 8 as a consequence of the inversion relation
of the dilute AL model. In particular, the amplitude is constant for each of
the masses. This is in contrast with the numerical estimates of the
amplitudes Bmj

in (14) for the Ising model, which are clearly mass depen-
dent.(17) Although the dilute A3 model, E8 and the magnetic Ising model all
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share the same critical behaviour in the scaling limit, it does not follow that
their universality extends to the sub-leading correction terms. For this
reason it may well not be possible to predict the amplitudes of the sublead-
ing corrections for the Ising model.

As a final remark we note that the next term in the expansion of (17)
has coefficient

:
a _sin \a?

g ++
1
5

sin \5a?
g +& (21)

and for the integers a in Table I which apply to the Ising case (but not for
those in Tables II and III) the second term sums again to zero. Thus the
L=3 mass spectrum is given by

mj=8p8�15 {:
a

sin
a?
30= [1+ p16�15+ p32�15+O( p48�15)]. (22)

However, there is no simple pattern to the higher-order coefficients. The
O( p48�15) term in (22) is mass dependent. For the first two mass ratios we
find the leading correction to be

m2

m1

=2 cos
?
5 \1+

- 5
7

p48�15+&1.618(1+0.319p48�15) (23)

m3

m1

=2 cos
?
30 \1+

sin 2?�15
7 cos ?�30

p48�15+&1.989(1+0.058p48�15). (24)

The convergence to Zamolodchikov's predicted mass ratios in the dilute A3

model is thus more rapid than that observed for the Ising model.
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